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Abstract  

The energy and angular momentum flux carried by gravitational waves from a spinning 
rod are calculated exactly in the weak field limit of general relativity. It  is shown that 
contrary to common belief, the energy and angular momentum flux are not proportional 
and the energy and angular momentum equations governing the evolution of the rod 
are not identical. The spinning rod does not remain rigid: Its length increases. Both the 
angular deceleration and the rate of change of length are dependent on the nature 
of the material of the rod, and these rates are small, as expected. 

1. In troduct ion 

In the theory of  general relativity, it  is believed that  systems of moving masses 
emit  gravitational radiation carrying away energy and angular momentum from 
the systems. In the linearized version of  general relativity, expressions for 
the rates of  energy and angular momentum transported by the gravitational 
waves are well known (Landau and Lifschitz, 1962; Peters, 1964). In particular, 
the energy loss by  a spinning rod was worked out  by Eddington (1922) in the 
weak field limit with the tacit  assumptions that  both  the length and angular 
velocity of  the rod remain unchanged over a period. 

In this paper, we shall remove the assumptions ment ioned above for the 
case of  a spinning rod in order to examine the implications when bo th  energy 
as well as angular momentum losses are taken into account. In section 2, 
exact expressions for the energy and angular momentum transported by the 
gravitational waves within the weak field limit are given. We will see in 
section 3 that  the resultant equations for the loss of  energy and angular 
momentum are, contrary to common belief, not  identical. Section 4 shows that 
i f  the rod is rigid, in general, to each value of  the angular velocity there are 
two additional possible values for the angular dece le ra t ion-an  untenable 
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situation. This shows that the assumption that  the rod remains rigid is incon- 
sistent with the linearized version of general relativity. In fact, as we will see 
in section 5, a spinning rod emitting gravitational radiation will not  only slow 
down, but its length will increase, the rates being dependent also on the sub- 
stance of the rod. These effects are small: The rod will take an infinitely long 
time to slow down to zero angular velocity and the maximum fractional 
increase in the length is small. 

2. Energy and Angular Momentum Flux by Gravitational Radiation 

The energy and angular momentum flux due to the emission of gravitational 
radiation by any system is given in the weak field limit by the usual expressions 
(Landau and Lifschitz, 1962; Peters, 1964): 

PE = ( G/ 4 5cS)<(~'o4s) ~ > (2.1) 

P~ = ( 2G/ 45cs) eo~[3,t <~8~3,~) (2.2) 

Here 

~ = f p(r)(3x~xe - 6~r2)dV (2.3) 

which is the quadrupole moment  tensor, while e~gq is a completely anti- 
symmetric unit pseudotensor. 

The uniform rod, of  mass M and length 2L, is spinning about its center of  
mass in the X - Y  plane with an angular velocity co about the Z axis. We f"md 

where 

Nxx = 1(3 cos 2 0 - 1) (2.4) 

~xy = ~yx = 3/s in  0 cos 0 (2.5) 

@yy = / (3  sin 2 0 - t )  (2.6) 

Nzz = - I  (2.7) 

I = ~ML 2 (2.8) 

which is the moment  of inertia about the Z axis. Taking into account the 
possible changes of  the length and angular velocity of  the rod, we get from the 
above equations the following exact expressions for the energy and angular 
momentum flux: 

PE = 8(3"1 = + 7z 2 + 3'a 2) (2.9) 

PJz = (g/wX3'13'4 + 3'23'5) (2.10) 

where 

% = 1 - ~(/3= + 6/3113a + 6/3a 2 + 6/34) 

3"2 = 1(6~1 + 12/3s -- 3/3S~4 --/3s) 

(2.11) 

(2.12) 
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"}/3 = (N/~/12)(3~3/34 +/35) (2.13) 

74 = 1 - ½(/332 + 134) (2.14) 

7s = ½(/31 + 4~3) (2.15) 

/31 = cb/co2 (2.16) 

/32  = ~to- >~ (2.17) 

/33 = L/Leo (2.18) 

~4 = )L/L co= (2.19) 

13s ='L'/Leo 3 (2.20) 

$ = 32GI 2 eo6/5C5 (2.21) 

The expressions (2.9) and (2.10) for the energy and angular momen tum flux 
reduce respectively to the usual results: 

(PE) usuat = d (2.22) 

(es~)usu.~ = e/eo (2.23) 

when the dimensionless quantities,/3i, are all neglected. Since in general these 
quantities are not zero, the energy flux is not  proportional to the angular 
momentum flux as commonly believed. The corrections to the usual ex- 
pressions are small, as expected. 

3. Iihergy and Angular Momentum Equations 

As we are considering the mot ion of a nonrigid rod, we must take into 
account the internal potential and thermal energy of  the rod. To simplify, we 
shall assume the rod to be at a constant temperature and thus we need only 
consider its internal potential energy. I f  the interparticle force is conservative 
and obeys Newton's  third law in the strong form (Goldstein, 1950), an 
internal potential energy U can be defined. Thus the total energy of  the rod is 

E = ½Ieo 2 + U (3.1) 

while the angular momen tum is 

4 =/co (3.2) 

where, for simplicity, we have used Newtonian mechanics only (see section 6 
for refinements). Taking into account the change of  the length of the rod and 
its consequent change of  internal potential energy, the above equations lead to 

dE/dt  =/¢o3([31 +/33 + ~) (3.3) 

and 

dJz/at = IwZ(J31 + 2/33) (3.4) 
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where 

This can be written as 
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= (7/Ico 3 (3.5) 

f = bt33 (3.6) 

with 

L dU 
b -  

Ico 2 dL 

Another form for equation (3.7) is 

3Y &L 3Y ,SL 
b -  coM) 

--d- 

(3.7) 

(3.8) 

4. Gravitational Radiation f rom a Rigid R o d  

In this section, we assume that the rod is rigid. This implies that  

t33 = t34 = t3s = ~ = 0 (4.1) 

The energy and angular momentum equations become [from equations (3.9) 
and (3.10)] 

f l l  = -.1[(1 -- ¼132) 2 + -~fll 2] (4.2) 

3 2 t31 = -.111 - ¼t3~ + ~ 1  ] (4.3) 

~I + 2~3 = --.1["/1~/4 + ~2"/5 ] (3.10) 

with 

*1 =$11co3 = 32Gico3/5cs (3.11) 

where we have used equations (2.9), (2.10), (3.3), (3.4), and (3.6). Thus, the 
energy equation (3.9) and angular momentum equation (3.10) are not  identical 
in general. 

p L 3 co 2 2T L 

where Y is the Young's modulus, p the density, T the tensile strength, and coM 
the maximum angular velocity beyond which the rod will break. In this form, 
it is clear that the quantity b is small. For example, for an aluminium rod of 
length 2 meters and co = 100, b "~ 82 AL, which is less than 1 as AL is dear ly 
small. In fact as co ~ 0 ,  b ~ 0 ,  a result clear from equation (5.6). 

Since the rate of  energy and angular momen tum carried away by  gravita- 
tional waves must be equal to the rate of  loss of  energy and angular momentum 
of  the system respectively, we get 

,81 + ~3(1 + b) = -.11712 + 722 + "/3 2 ] (3.9) 
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Note that the usual treatment of ignoring the length and angular velocity 
variations can be obtained by putting ~1 = ~2 = 0 on the right-hand side of 
equations (4.2) and (4.3). Thus the usual result is 

(/~ 1)usual = --I/  (4.4) 

For consistency, we cannot ignore 131 and t32 even though they are small. 
From equations (4.2) and (4.3), we get 

i32 = 613t 2 + ¼•2 2 

By defining 

y = do 2 

V =(..0 4 

and 

q = ay /a~ 

equation (4.5) becomes a first-order differential equation: 

q 2 _ 2q + 6y/v  = 0 

The solution of this equation is given in the parametric forms 

v2 = Cq/(q + 4) s 

y = ~ ( 2 q  - q2)~ 

(4.5) 

(4.6) 
(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

where C is an arbitrary constant of integration. It can readily be seen that in the 
positive y - v  quadrant (the other quadrants do not correspond to physical 
situations)y is a double function of v and the gradients of both branches are 
positive for any positive value of C. Both are acceptable solutions of the 
differential equation (4.5). 

Thus in general there are two solutions for the angular deceleration 
corresponding to each angular velocity of the rod. Furthermore, there is 
another solution, which is given approximately, as the correction terms are 
small, by equation (4.4). Hence we have the untenable situation of having 
three possible values for the angular deceleration for each value of the 
angular velocity. We therefore claim that the assumption that the rod be rigid 
is inconsistent with the linearized version of the general theory of relativity. 

5. Gravitational Radiat ion f r o m  a Nonrigid R o d  

Thus the length of the rod cannot be constant if we subscribe to the 
linearized version of the general theory of relativity. In this section, we shall 
solve for the case of a nonrigid rod. Since the energy and angular momentum 
flux are small compared to the total energy and angular momentum of the 
rod, the rates of change of the angular velocity and the length of the rod are 
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both small. Thus, to a good approximation, we put 

6 ~ = L = L ' =  0 (5.1) 

in the energy and angular momentum equations (3.9), (3.10). These become 

~1 +/330 + b) = - 7 1 1  + ~fh 2 + 6th/33 + 6 thz '+  ~P3Z{~l + th)  z] (5.2)  

/31 + 2/3s = - r / [  1 + ~/312 + 3/31/33 + 4fl32 + ~33(t31 +/33) ] (5.3) 

The last equation is a quadratic equation in fix. To O(~3), we have 

fil = - 2 t h  - (1 +/33 = - ~ ¢ ) ( 1  - ~n~33) 

-~(1  - 22/332 + 35½/~34 + 39~fl36 + 13~/338 + 9/3~°)~3 (5.4) 

When we substitute equation (5.4) into equation (5.2), we obtain a polynomial 
equation in t33 

[2 + (93/4)~ 2] 7/t332 + (b - 1 + 3~7z)/33 + (3/2)r/3 = 0 (5.5) 

correct to 0(/332). We thus get 

and equation (5.4) yields 

3 r/3 
(5.6) 

133 ~ 2 ( 1 -  b) 

3(5 - b) 3 
~ l - ~ - r /  4(1 ~-)r/ (5.7) 

The expression for/31 [equation (5.7)] differs from the usual result 
[equation (4.4)] by terms which are smal l -of  the order of  ~73. Furthermore, 
unlike the usual result, the intuition that the rate of  slow-down of the rod is 
dependent on the nature of  the material of  the rod is established. From 
equation (5.6), we see that the rod actually increases in length, the rate of  
increase being proportional to 73 and dependent on the nature of  the 
substance. That both the rates of change of  angular velocity and length be 
dependent on the nature of  the material arises from the mutual dependence 
of  the internal potential energy and the kinetic energy of the rod: Any 
increase in the length of the rod would decrease the kinetic energy and 
increase the potential energy of  the rod. 

It is easy to show from equations (5.6) and (5.7) that, approximately, 

and 

(Wo/¢O) ~ ~ 1 + 4r/owo(t - to) (5.8)  

That is, the rod takes an infinite time to slow down and the maximum 

_ [  r1°2 1 - (5.9) 
- -  ~ 1  ( 1 - ( b ) )  
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fractional increase of the rod is 

ALm~ ~ ~o 2 
L0 4(1 - (b)) 

which is a negligibly small quantity. 

(s.lo) 

6. Discussion 

We see that, as a consequence of emission of gravitational waves from the 
rotating rod, the length of the rod is not constant. This conclusion comes from 
the existence of two independent equations-the energy and angular momen- 
tum equations, (3.9) and (3.10)-and the assumption that the mass of the 
rod remains unchanged. One wonders if these two equations would become 
identical when the flux of gravitational waves is calculated to a higher order-  
post-Newtonian approximation (Epstein and Wagoner 1975) or to octopote 
order (Bekenstein, 1973)-and the energy and angular momentum of the system 
evaluated in the framework of the theory of general relativity. That they 
would not be so follows jointly from the fact that higher-order corrections to 
the gravitational flux introduce terms that are at least of order c -2 and the 
fact that the rates of change of energy and angular momentum of the system 
depend only on cO, L and not 65. Thus the rod will still be nom'igid though 
the rate of change of the length of the rod would be modified from that 
derived in section 5. 

The contention that the length of the rod must be variable can also be seen 
by using the fact that the dynamical effects of the gravitational waves can be 
attributed entirely to a radiation reaction force acting on the system. From the 
Appendix, we see that there is a component of the radiation reaction force 
acting along the rod. This force is responsible for the change of the length of 
the rod. 

Finally, we observe that our work is, in a sense, a converse of the result 
(due to Rayner, see Trantmann et al., 1964) that the angular velocity of a 
rigid heavy body is constant along any particle world-line in the body. 

Appendix 

When a system emits gravitational waves, the emission process affects the 
dynamics of the system since the waves carry away energy and angular 
momentum from it. The dynamical effects due to the gravitational waves can 
be attributed to an additional potential, the radiation-reaction potential ~b r 
(Misner et al., 1973). Here 

q~r=-l--5ccS -d-~sDa x°~x 3 (Al) 

Thus owing to this potential the acceleration on a particle at x'l (measured in 
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tile rod's rotating frame directed with the x'l axis lying along the rod) is given 
by 

, 2G dSD12] "i + 
4Xl)=-l- c  1 + at S ] x -gv-]i (m) 

When we substitute in the expressions for the quadrupole moment tensor 
from equations (2.4)-(2.7) we get 

GMx ~. 
a(Xl) - ~ e ~ t [ ( e 3 + e l c o s 2 0 - e 2 s i n 2 0 ) c o s O + ( e l s i n 2 0 + e 2 c o s 2 0 )  

x sin 0] ~ + [(el sin 20 + e2 cos 20) cos 0 

+ (e3 - el cos 20 + e2 sin 20) sin 0]J} (A3) 

where 

e ,  = /~s  --  4c0&6 --  2dO°e6 - 4co=as 

e2 = ~6  -t- 4(.o1~8 + 2dOas - -  4502~6 

~3 = ~4 

~4 = ~L2 co3(~5 + 3~3~4) 

O~s = -2L2co3(631 + 1233 - 3~3~4 - -  ~ 5 )  

~ 6  = -8L2 c°3 [1 - -~(~2 + 6~1~3 + 6/332 + 634)] 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

a i[(x i )  = -(GM/15c 5)X i(e1.4- e 3) 

a ± (x '1) = ( GM /15c 5 )x'l e z 

(A10) 

( a l  1) 

Since (el + e3) is not zero, there is a finite component of the acceleration 
along the rod due to the radiation-reaction potential. We see that the rod is 
acted on by two equal and opposite forces, FR, each acting on half of the rod 
directed along the axis of the rod (in addition to the perpendicular com- 
ponents). From (A10), we get 

GM2L(ex + e3) 
FR - 60cS (A12) 

Consequently the length of the rod will be changed because of the existence 
of two equal and opposite forces directed along the rod. We note that even 
when the length remains unchanged, FR is not zero. 

Thus the components of the acceleration at X'l along the rod and perpen- 
dicular to it (measured in the direction opposite to the direction of rotation) 
are 
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